Generating non-Noetherian modules efficiently.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noetherian Modules

In a finite-dimensional vector space, every subspace is finite-dimensional and the dimension of a subspace is at most the dimension of the whole space. Unfortunately, the naive analogue of this for modules and submodules is wrong: (1) A submodule of a finitely generated module need not be finitely generated. (2) Even if a submodule of a finitely generated module is finitely generated, the minim...

متن کامل

Do Noetherian Modules Have Noetherian Basis Functions?

In Bishop-style constructive algebra it is known that if a module over a commutative ring has a Noetherian basis function, then it is Noetherian. Using countable choice we prove the reverse implication for countable and strongly discrete modules. The Hilbert basis theorem for this specific class of Noetherian modules, and polynomials in a single variable, follows with Tennenbaum’s celebrated ve...

متن کامل

Generating Modules Efficiently: Theorems from Algebraic K-Theory

Several of the fundamental theorems about algebraic K, and Kr are concerned with finding unimodular elements, that is, elements of a projective module which generate a free summand. In this paper we use the notion of a basic element (in the terminology of Swan [22]) to extend these theorems to the context of finitely generated modules. Our techniques allow a simplification and strengthening of ...

متن کامل

Modules with Noetherian second spectrum

Let $R$ be a commutative ring and let $M$ be an $R$-module. In this article, we introduce the concept of the Zariski socles of submodules of $M$ and investigate their properties. Also we study modules with Noetherian second spectrum and obtain some related results.

متن کامل

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 1984

ISSN: 0026-2285

DOI: 10.1307/mmj/1029003021